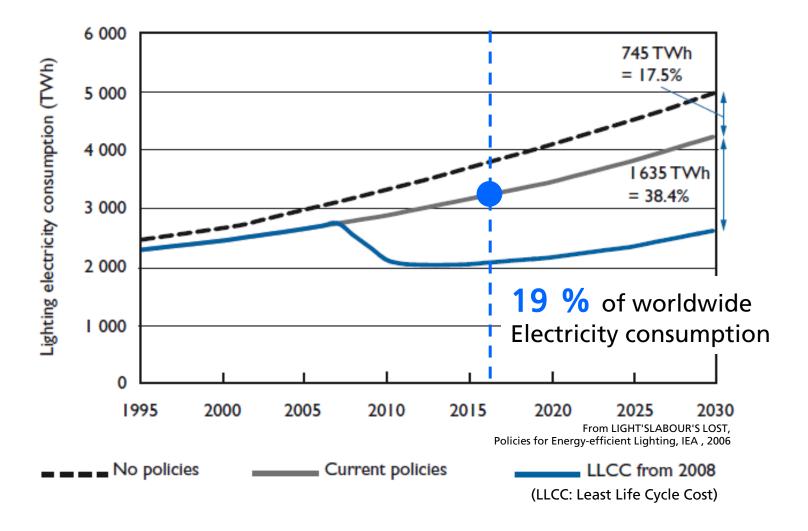
IEA SHC Task 50: Advanced lighting solutions for retrofitting buildings


An integrative approach to allocate potentials in lighting retrofits

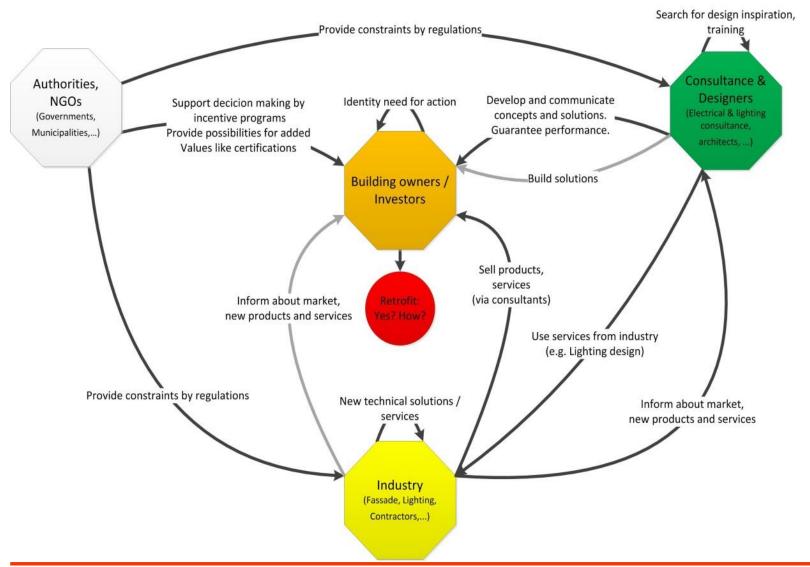
Jan de Boer, FHG-IBP, Stuttgart

Lighting and Energy: Status Quo and Prediction

Lighting and Energy: Potentials in Retrofitting

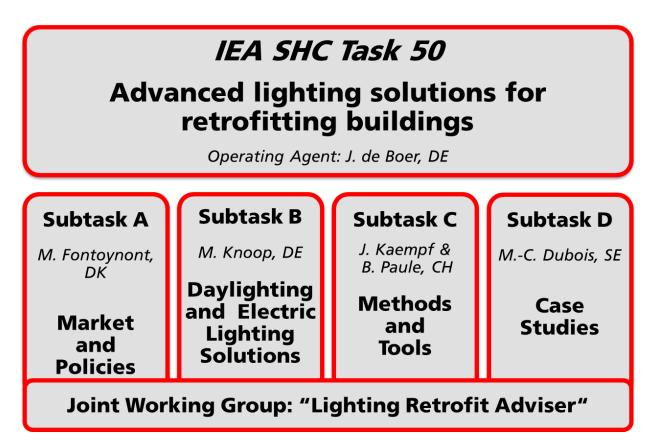
Only small volume of new building constructions

~3% retrofit rate (estimation facade and lighting industry)


IEA SHC Task 50 Advanced lighting solutions for retrofitting buildings

40-50% of turnover of facade and lighting industry in retrofitting

75% of appliances outdated (older than **25 a**)

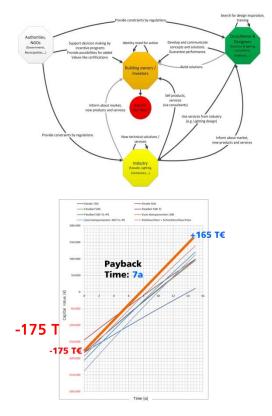

Target audiences

Task Structure

The objective is to accelerate retrofitting of daylighting and electric lighting solutions in the non-domestic sector using cost - effective, best practice – approaches, which can be used on a wide range of typical existing buildings.

Task Structure

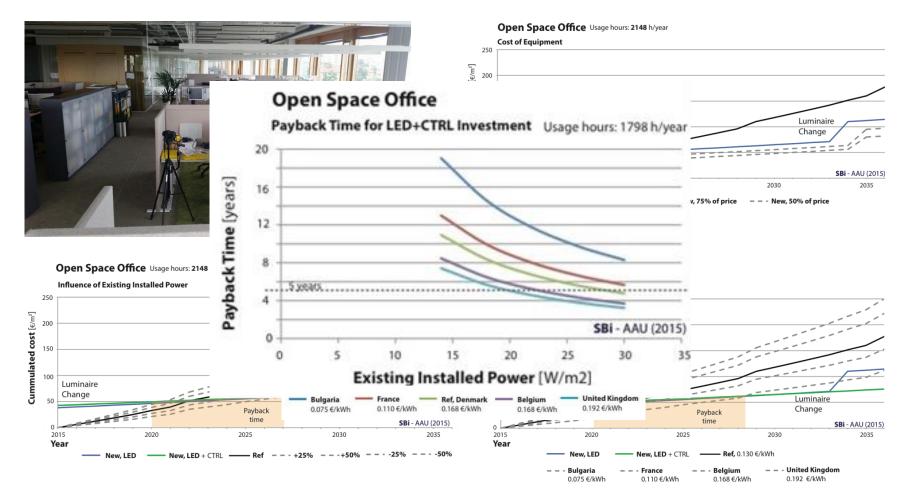
The objective is to accelerate retrofitting of daylighting and electric lighting solutions in the non-domestic sector using cost - effective, best practice – approaches, which can be used on a wide range of typical existing buildings.



Subtask A: Market and Policies

[Coordination: M. Fontoynont, SBI, DK]

Objective: To understand, and model, the financial and energy impact associated to retrofitting daylighting and electric lighting of buildings.


- A.1. Global economical models
- A.2. Barriers and benefits. Regulation and certification
- A.3. Proposal of action concerning value chain

"Low hanging fruits": Efficiency & Economics

[Data for Personal, open floor offices; education; manufacturing hall with and without rooflights; whole sale retail]

"Low hanging fruits"

Туре	Solution	Invest [€/m²]	Annual Cost, new [€/m²]	Payback time
	Existing	-	2,57	-
	LED	36,7	0,81	17
Single Office	LED + LM	42,7	0,22	16
	Existing	-	6,12	-
	LED	36,7	1,41	7
Open Plan office	LED + LM	42,7	1,18	7
	Existing	-	1,33	-
Ī	LED	36,7	0,42	>20
Classroom	LED + LM	42,7	0,28	>20
	Existing	-	10,35	
Ī	LED	36,7	4,31	5
Wholesale / Retail	LED + LM	42,7	3,65	5
Hall without	Existing	-	7,19	-
Rooflights	LED	10,0	2,05	2,5
	Existing	-	5,37	-
Hall with rooflights	LED	10,0	1,53	3,5
nai with roomgits	LED + LM	16,0	1,17	4,5

Financing

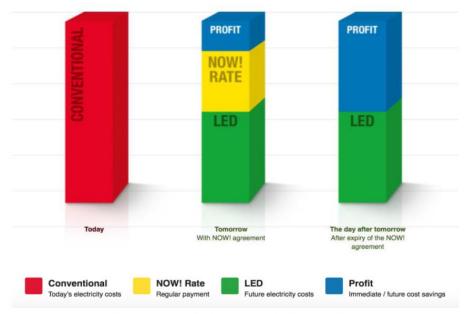
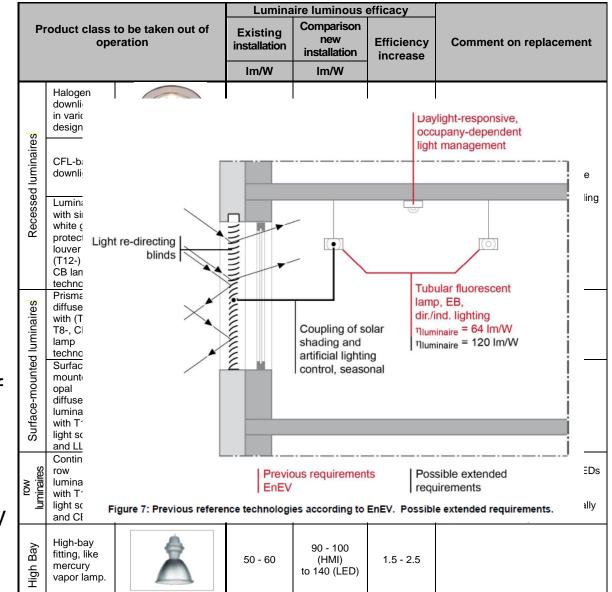


Figure 1 - Principle of NOW! Lighting, Source: Zumtobel

- ESPC (Energy Saving Performance Contracts) and Leasing
- Added simplicity for the building owner
- Integration a guarantee of service
- This new approach triggers a new kind of competition:
 - manufacturers, installers, utilities, facility managers are moving to this field,
 - creating a high financial pressure on costs of products,
 - but fortunately, on their reliability and quality as well.

Regulations


- Assessments of existing codes, comparisons, recommendations
- E.g. Taking old luminaires out of operation
- E.g. Requirements for the total luminous efficacy of new luminaires (for replacement)
- E.g. Requirements for system efficiency

1				Luminaire luminous efficacy			
	Product class to be taken out of operation		Existing installation	Comparison new installation	Efficiency increase	Comment on replacement	
				lm/W	lm/W		
	S	Halogen downlights in various designs		10 - 15	Up to 110 (LED)	approx. 8-11	
	Recessed luminaires	CFL-based downlights		30 - 40	Up to 110 (LED)	approx. 3	For recessed LED luminaires, bezels are offered, which ensure that the new technologies are
	Recesse	Luminaires with simple white glare protection louver with (T12-) T8-, CB lamp technology		40 - 60	Up to 110	approx. 2 - 3	compatible with the existing ceiling plan.
	d luminaires	Prismatic diffusers with (T12-) T8-, CB lamp technology		approx. 40	Up to 110	approx. 2 - 3	
	Surface-mounted luminaires	Surface- mounted opal diffuser luminaires with T12 light source and LLB		approx. 50	Up to 110	approx. 2 - 3	
/	row luminaires	Continuous- row luminaires with T12 light source and CB		40 – 60	Up to 130	approx. 2 - 3	Many manufacturers offer conversion kits for retrofitting LEDs to existing continuous-row luminaire systems, which allow making further use of the - usually expensive - bearing structure.
	High Bay	High-bay fitting, like mercury vapor lamp.		50 - 60	90 - 100 (HMI) to 140 (LED)	1.5 - 2.5	

Regulations

- Assessments of existing codes, comparisons, recommendations
- E.g. Taking old luminaires out of operation
- E.g. Requirements for the total luminous efficacy of new luminaires (for replacement)
- E.g. Requirements for system efficiency

Sustainability Labels

Sustainability labels, worldwide

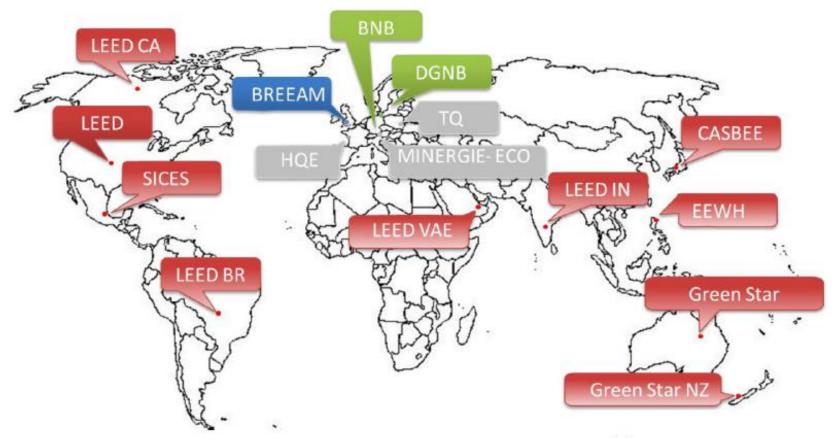


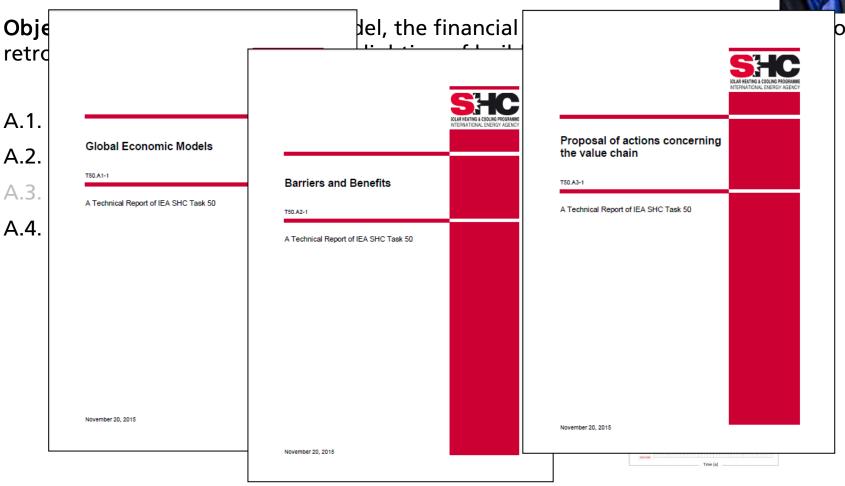
Figure 8 Overview on sustainability labels worldwide (based on data in [22]).

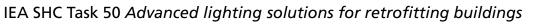
Sustainability Labels

- Electric lighting in general not the problem
- Sustainability labels in lighting offer new perspectives for daylight and visual comfort
- Comparison of different approaches according to a set of criteria

			System	
		DGNB / BNB	LEED	BREEAM
	Version	DGNB: New construction office and administration buildings	New Construction and Major	BREEAM New Construction Nondomestic
		Version 2015	Renovation	Buildings
		BNB: Version 2015	Version 2009	Version 2013
ral	Main criterion	Sociocultural and functional quality	Indoor Environmental Quality	5.0 Health and Wellbeing
General	criterion	DGNB: SOC 1.4	Credit 8: Daylight and	Hea 01: Visual comfort
ő		BNB: 3.1.5	Views	
0		Visual Comfort		
		+ lighting in the overall energy context		
	share of	DGNB: 3,2%	3,6%	4%
	lighting in the overall rating	BNB: 2,4%	(max. 4 / 110)	(4/15 credits, weighting "Health and Wellbeing" 15%
	Requirement	Min. 50% of the usable floor area:		
5		DGNB: Min. 1,0% DF - 2% and higher DF		
<u>ii</u>		BNB:		
Daylight entire building		Min. 1,0% DF - 2% and higher DF	-	-
Day tire I	Evidence	DGNB: Simulation / measurement		
e Ji	evidence	BNB: Simulation / EnEV	-	-
- s	Requirement	All Workplaces:	75% of continual used	80% of continual used spaces:
es ace		DGNB: min. 45% - 75% relative luminous	spaces:	e.g. Ø 2% DF + Uniformity 0,4 or
laces / spaces		exposure	Min. 270lux (Sept)	other options
<u>ä</u>		BNB: Min. 45% - 80% relative luminous		
Daylight workplaces		exposure		
h t a t	Evidence	Simulation / simplified in compliance	Simulation / description	Simulation, measurement
Daylight continua		with	Light transmission glazing	CIBSE Lighting Guide 10
ay		DIN 18599	share of openings/	
<u> </u>			measurement	
	Requirement	DGNB: window area + solar-/ glare	90% of continual used	Share of openings $\geq 20\% - \geq 35\%$ of
		protection class 2 – highest	spaces	room surface
		BNB: window area +		and
		solar protection + view through activated		95% of the area are within $7 \ge 14$
Į		solar protection with/without adjustment		meters to a wall with windows or other openings
of sig				other openings
line of sight				
=	Evidence	DGNB: area DIN 5034	Drawing	Plans / photos /
		solar protection. DIN 14501 data sheet /	line of sight	confirmation
		photo		
		BNB:		
		area DIN 5034 photo / plan of the office	l	ļ

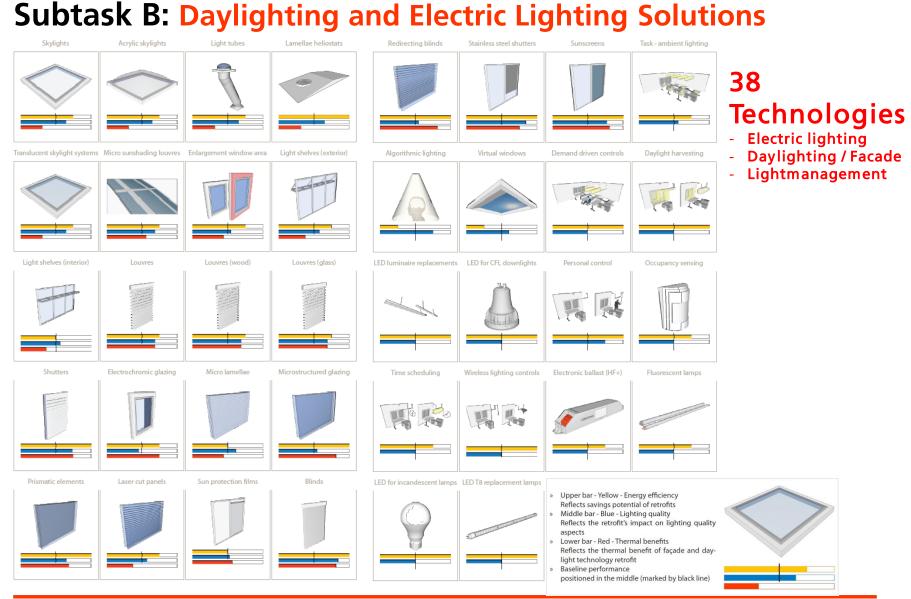
Sustainability Labels


- Electric lighting in general not the problem
- Sustainability labels
 in lighting offer
 new perspectives
 for daylight and
 visual comfort
- Comparison of different approaches according to a set of criteria


			System	
		DGNB / BNB	LEED	BREEAM
absence of glare trough daylight	requirement	Function of glare protection DGNB: class 1 – highest BNB: glare protection BschAVO /	-	glare control strategy with sufficient daylight for cloudy situations and situations without direct sunlight or
ence (light directing with glare protection + shielding of direct light		
abset	evidence	DGNB: DIN 14501 classification, data sheet solar / glare protection BNB: photo	-	description inspection, photo
ce re al	requirement	artificial light DIN 12464		illuminance max.
absence of glare artificial	-	yes / no	-	luminance (national best practice lighting guides)
	evidence	DGNB: artificial light simulation BNB: documentation luminaires	-	specification, inspection, photo
Idering	requirement	colour rendering for artificial light + daylight (whole system) ≥ 80 - ≥ 90	-	-
colour rendering	evidence	DGNB: spectral calculation according to DIN EN 410 manufacturer specifications BNB: DIN EN 12464 data sheets/ measurement or spectral characteristic values	-	-
light distribution	requirement	BNB: artificial light: compliance norm – combined direct-indirect lighting with control of single workplaces	-	uniformity
dis	evidence	BNB: DIN EN 12464 description + list of luminaires	-	-
user	criterion (differing)	DGNB: SOC 1.5 BNB: 3.1.6 Possible influence of the user	Credit 6.1: Controllability of Systems - Lighting	5.0 Health and Wellbeing (as mentioned above)
possible influence of the user	requirement	DGNB: influence on solar / glare protection for 80% of the rooms of the main use per room or per group (max. 3 persons) BNB: per window / per zone (max. 3 persons) / per room	controlling is possible for 90% of the users / group of users	Max 4 workplaces controlled together, window workplaces can be controlled separately
ssod	evidence	DGNB: data sheet, description BNB: description, explanatory report, photo documentation		-

Subtask A: Market and Policies

[Coordination: M. Fontoynont, SBI, DK]



1

Subtask C: Methods and Tools

[Coordination: Jérôme Kaempf, EPFL, Bernard Paule, Estia Switzerland]

Objective: Provide methods and tools to make energy efficiency and economics of lighting retrofits transparent to stakeholders.

- C.1. Analysis of workflow and needs
- C.2. State of the art review
- C.3. Development of a simple integrated rating model
- C.4. Energy audit and inspection Procedures
- C.5. Advanced and future simulation Tools

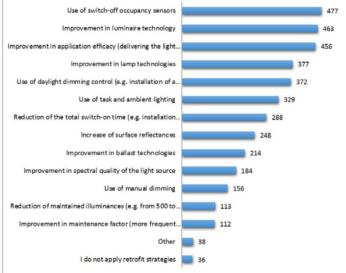


Figure 7: Evaluations of the questions on main retrofit strategies used in current practice.

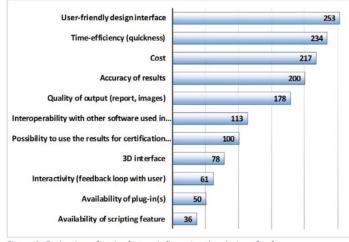


Figure 9: Evaluation of the question on handling of design and decision processes concerning the integration of lighting technologies in retrofit projects.

Figure 8: Evaluation of main factors influencing the choice of software.

Subtask C: Methods and Tools

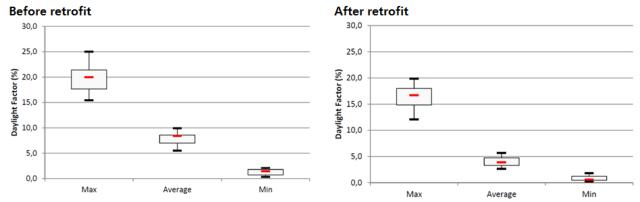
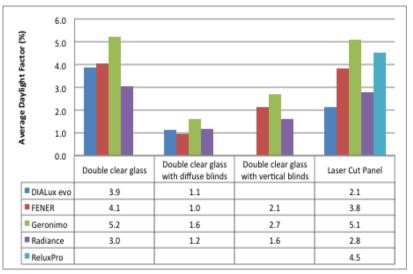
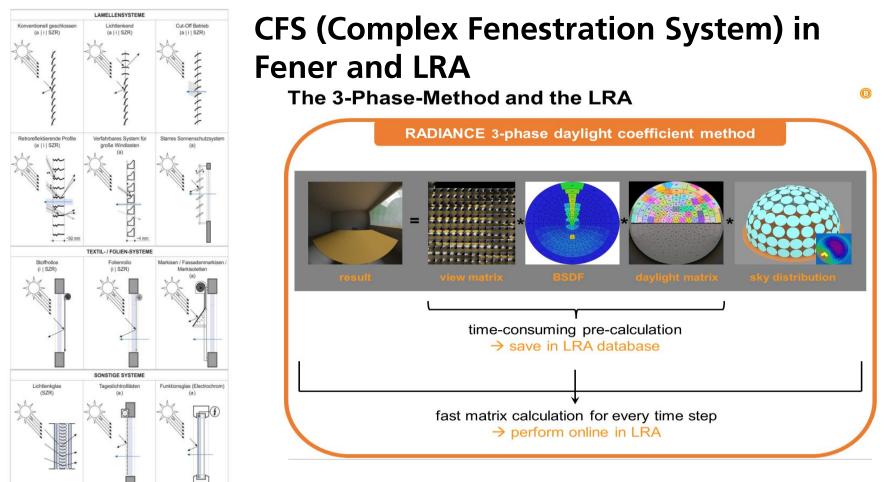



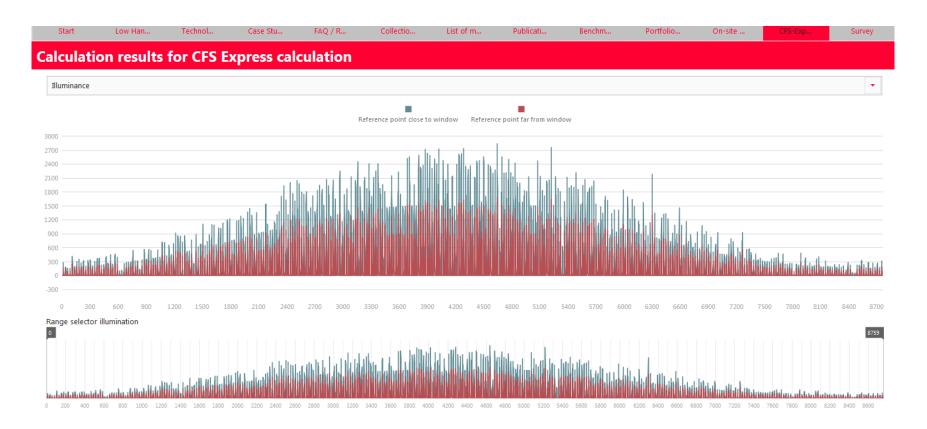
Figure 6: Exemplary results from the state of the art review of 13 simulation tools. The figures show the calculated daylight factors for a test scenario before and after retrofit. The general drop of the daylight factor due to lower light transmittance of new glazing systems (due to low ε coating) is shown. Additional the review showed a quite significant spread of calculation results.



20 Tools, Methods

Figure 7: Daylight Factor obtained with different advanced simulation tools for 4 different complex fenestration systems.

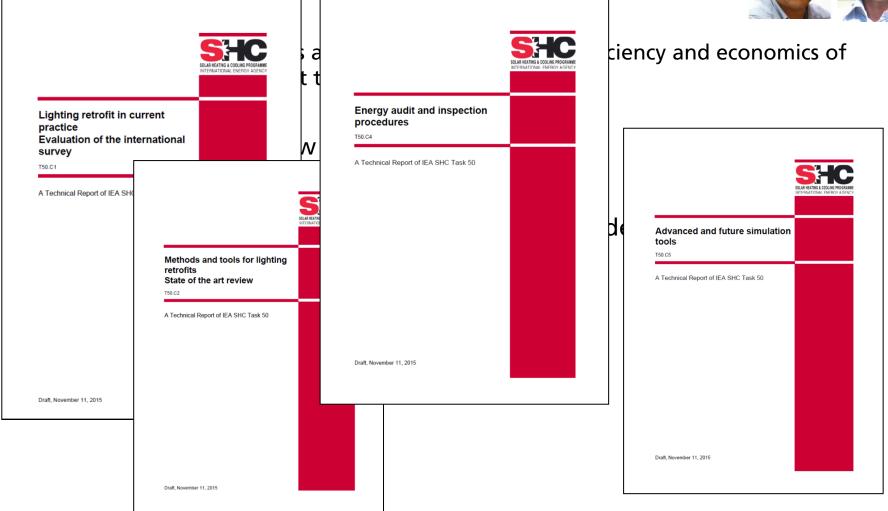
Subtask C: Methods and Tools


IEA SHC Task 31: hours to evaluate annual performance Now: < 5 s on a mobile device

IEA SHC Task 50 Advanced lighting solutions for retrofitting buildings

a: außenliegend; i: innenliegend; SZR: Scheibenzwischenraum

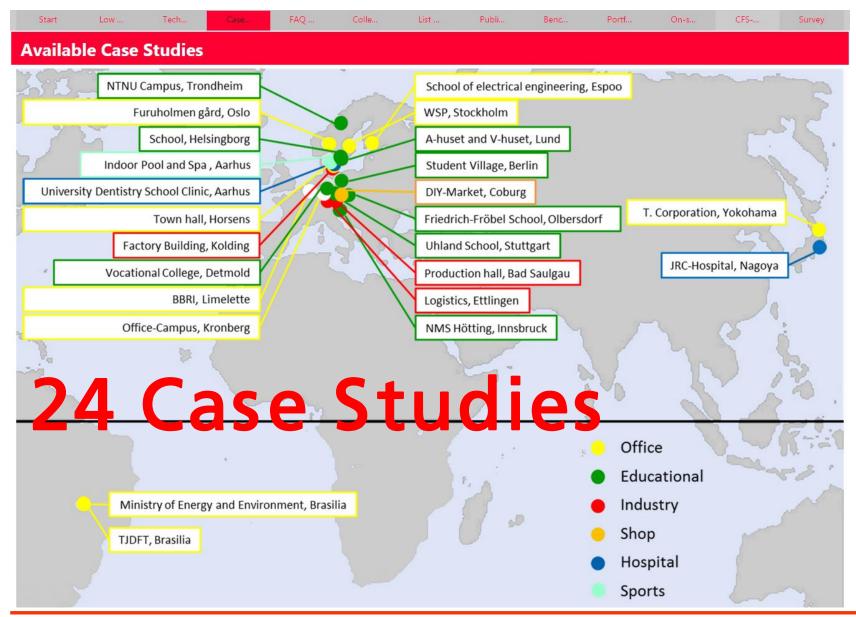
Fast daylight analysis over a year: Illuminances



Subtask C: Methods and Tools

[Coordination: Jérôme Kaempf, EPFL, Bernard Paule, Estia Switzerland]

Subtask D: Case Studies


[Coordination: Marie-Claude Dubois, LTH, Sweden]

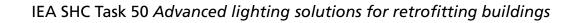
Objective: Perform building stock analysis including generation of a building typology for lighting retrofits. Based on this deliver proven and robust evidence on achievable savings and show integrated retrofit strategies for representative Case studies

- D.1. Building stock / typology (selection, classification)
- D.2. State-of-the-art (literature, e-info)
- D.3. Assessment and Monitoring Procedure
- D.4. Case Study assessment
- D.5. Overall conclusions, lessons learned
- D.6. Case Study book / e-documentation

AUSTRIA	BELGIUM	BELGIUM	6 BRAZIL	♦ BRAZIL			
Bartenbach R&D office, Aldrans	BBRI, Limelette, Wavre	BBRI, Sint-Stevens- Woluwe, Lorenzberg	Tribunal of Justice (TJDF-T), Brasília	Ministry of Environ- ment (MMA), Brasília			
electric/daylight-ing retrofit	Daylighting and T8 to LED	Halogen to LED	Shading devices	Shading devices and T12 to T8			
S BRAZIL	CHINA	DENMARK	DENMARK	DENMARK			
	States -						
Ministry of Energy (MME), Brasília	The National Library of China, Bejing	Horsens Town Hall, Horsens	Aarhus University Dental School Clinic	Swimming pool and bath 'Spain', Aarhus			
Shading, T12 to T5, daylight controls	Shading, T12 to T5, daylight controls	Fluorescent 2700K to LED 6000K + controls	T8 3000K to T5 4000K and daylight controls	Historical building, LED and fluorescent			
FINLAND	GERMANY	GERMANY	GERMANY	GERMANY			
Aalto University office, Espoo	Friedrich-Fröbel School, Olbersdorf	DIY Market, Coburg	Dietrich Bonhoeffer College, Detmold	Flat, Berlin			
T8 to LED with daylight controls	Daylighting systems and controls	HMI to LED lighting	Facade renovation and T5 to LED	Incandescent to LED bulbs			
GERMANY	GERMANY	GERMANY	GERMANY	JAPAN			
Student Village Schlachtensee, Berlin	Production hall Baden-Württemberg	Logistic hall	Uhlandschule School, Stuttgart-Rot	Taisei Technical Center			
Glazing, shadings and incandescent to LED	Rooflight, T8 to LED and controls	T8 to LED and day- light-linked controls	T8 to T5 and combined controls	Fluorescent to LED			
NORWAY	SWEDEN	SWEDEN	SWEDEN				
Powerhouse Kjørbo, Oslo	Architectural School A-hus, Lund	WSP Headquarter, Stockholm	High school, Helsingborg				
Building retrofit to zero emission building	Renovation of interior to higher reflectances	Enhanced reflectances, T8 to T5 and controls	T5 pendants to indirect LED				
Colour Key fo	Colour Key for building types						
Industry	Retail	Office Housing	g Sport	Education			

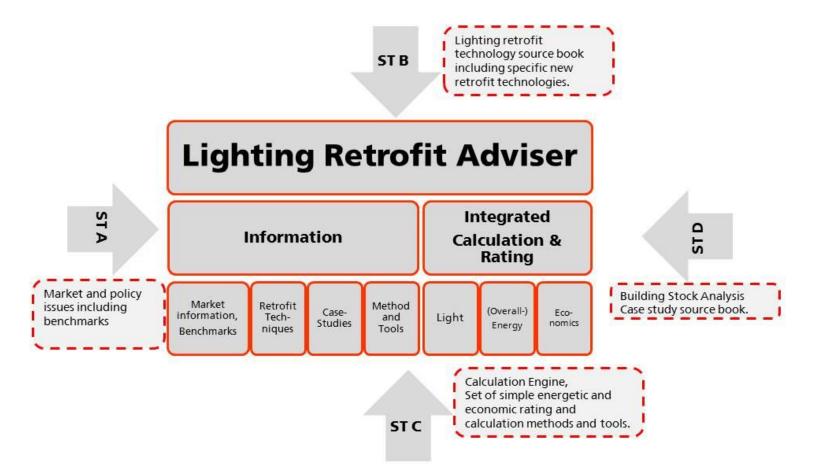
Assessment and Monitoring Protocol

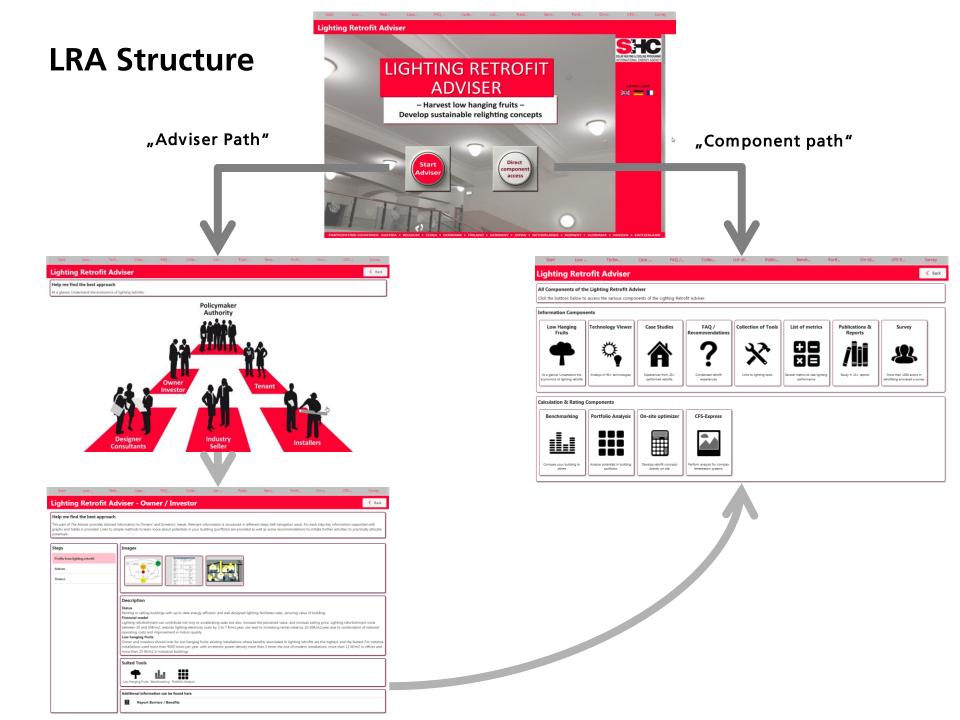
Energy use	Retrofit costs	Photometric assessment	User assessment
assessment of the energy use	estimation of installation and running costs	objective evaluation of the luminous environment	subjective evaluation of the luminous environment
retiector	\checkmark	sensors	
Reference grey surface		 many extension cables 	Q
1 reference <u>colour</u> chart		 1 exterior global <u>illuminance</u> sensor on horizontal plate 	-
• 1 hand-held <u>lux</u> meter (interior)	Takes 1	• 1 vertical illuminance sensor with horizontal shield	0
 1 hand-held lux meter (exterior) 	THE	• 1 amplifier	
1 hand-held luminance meter	P	• 1 cylindrical illuminance sensor mounted on tripod	
 1 good quality digital camera (preferably Nikon or Canon) for HDR photography 		1 spectrophotometer	


ase Studies	Lightbands before retrofit	LED-fitted lumin	aire after retrofit	
ase study viewer - E	ngin Engine construction hall in Baden-Württe	mberg	K Back	
Proj	erall Conclusions			
Build Project Description	Rating Overall Retrofit Retrofit of Electric Lighting Retrofit of Electric Lighting	 Retrofit of Daylighting Energy Use 		
Ca: Performance Evaluation F Costs	erall Conclusions at a Glance LED luminaires with high luminous efficacy Daylight responsive dimming of LED luminaires More uniform illumination by using a higher number of luminaires High energy and costs savings by retrofitting the artificial lighting system Huge improvement of working conditions with addition of rooflights	with high luminous efficacy nsive dimming of LED luminaires illumination by using a higher number of luminaires nd costs savings by retrofitting the artificial lighting system		
User Perspective Overall Conclusions a m	scription of Overall Conclusions efurbishing the artificial lighting system with dimmable LED luminaires considerable saving rbished lighting system are a higher luminous efficacy combined with the possibility of day ore uniform illumination. v rooflights provide daylight in the whole construction hall and therefore improve the work	light responsive dimming. The higher number	of luminaires allow	tribution
 Performance Evaluation 	hting Environment at a Glance			efore iea of
Costs Lighting Energy Use Lighting	Average illumir Uniformity of i Characteristic c Characteristic c	Unit	Before Retroft	After Retrofit
Environment User Perspective De	scription of L Lighting Energy Consumption	[kWh/m²a]	26,50	6,10
Overall Conclusions Me Lur	asurements coul ninance distribut directly lit parts	[W/m²]	15,08	8,48
A SHC Task 50 Advance	ed lighting solutions for retrofitting build			

Case Studies Cross Evaluation

- Average improvement in energy efficiency:
 - Before retrofit: 27,1 kWh/m²a to
 - After retrofit: 14,3 kWh/m²a.
- All retrofits monitored achieved improvements in either energy efficiency or lighting quality or both.




Joint Working Group: Lighting Retrofit Adviser

[Coordination: Simon Wössner, Jan de Boer, Fraunhofer-IBP, Germany]

Reports & Publication & Software

- 12 Technical reports
- 1 Source book
- 5 Fact Sheets

- 1 Software (LRA: Electronic Source Book), 190 MB <u>www.lightingretrofitadviser.com</u>
- 2 Newsletters
- 11 Journal articles
- 49 conference contributions

IEA SHC HOME TASK HOME

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

About Project

Lighting Retrofit Adviser

Publications

Participants

Meetings / Events

Member Area

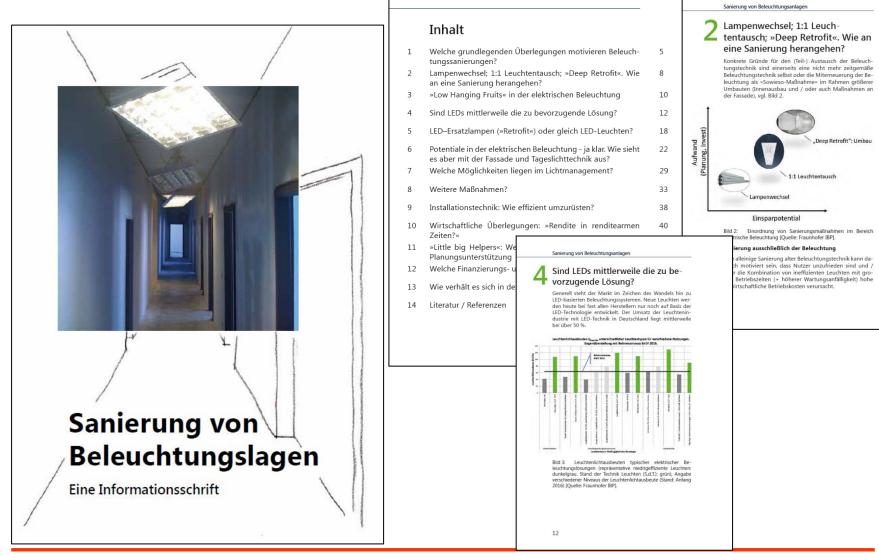
Contact

	Lighting	Solutions	for	Retrofitting
Buildings				

Overview

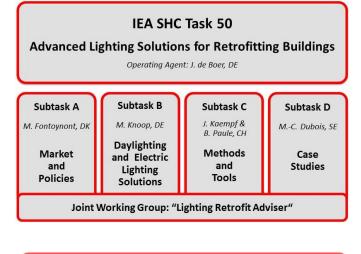
Lighting accounts for approximately 19%, i.e. 2900 TWH, of the global electric energy consumption. Projections by the IEA show that if governments only rely on current policies, global electricity use for lighting will grow to around 4250 TWh by 2030, an increase of more than 40%. Due to the world's growing population and the increasing demand for electrically driven services in emerging economies the increase will occur despite constant improvements in energy efficiency of lighting systems. One recent study indicated that investments in energy - efficient lighting is one of the most cost-effective ways to reduce CO2 emissions.

Research and developments in the field of energy efficient lighting techniques encompassing daylighting, electric lighting and lighting controls combined with activities employing and bringing these techniques to the market can contribute significantly to reduce worldwide electricity consumptions and C02 emissions. These activities will therefore be in line with several different governmental energy efficiency and sustainability targets.


Task Information

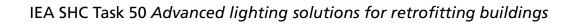
DURATION January 2013 — December 2015

OPERATING AGENT Jan de Boer GERMANY +49 711 / 970-3401 fax: +49 711 / 970-3399 jdb@ibp.fraunhofer.de

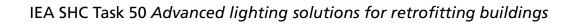

Information Guide: https://www.ibp.fraunhofer.de/

Lighting in the scope of IEA – SHC

- IEA-SHC Task 21/ECBCS Annex 29 "Daylighting in Buildings", 1995-1999
- IEA-SHC Task 31 "Daylighting Buildings in the 21st Century", 2001-2005
- IEA SHC Task 50 "Advanced lighting solutions for retrofitting buildings", 2013-2015 (2016)
- IEA Task 56 "Building Integrated Solar Envelope Systems for HVAC and Lighting", 2016-2020
- New Task proposal: "Integrated solutions for daylight and electric lighting"


Outlook

IEA Task / Annex Proposal Integrated solutions for daylight and electric lighting


From component to user centered system efficiency Task organizer: J. de Boer, Germany

Subtask A M. Knoop, Germany User Perspective, Requirements	Subtask B M. Fontoynont, Denmark Optimizing Integration of daylight and electric lighting	Subtask C D. Geisler-Moroder, Austria Design support for practioners (Tools, Standards, Guidelines)	Subtask D N. Gentile, Sweden W.Osterhaus, Denmark Lab and field study performance tracking
Joint Working Group		de (technical, architectura tool for integrated lightin	

